3  Unbiasedness

An estimator is unbiased if its expected value equals the true value of the estimand. In Equation 2.1 we defined our difference-in-means estimator as:

\[ \begin{align} \hat{\tau}^{\text{dm}} = \frac{1}{n_t}\sum_{W_i=1}Y_i - \frac{1}{n_c}\sum_{W_i=0}Y_i, \end{align} \]

and in Equation 1.1 we defined the estimand as:

\[ \begin{align} \tau = \frac{1}{n}\sum_{i=1}^n Y_i(1) - \frac{1}{n}\sum_{i=1}^nY_i(0). \end{align} \]

Given that we take sample sizes and potential outcomes as fixed, showing that our estimator is unbiased amounts to showing that:

\[ \begin{align} \mathbb{E}\left[ \hat{\tau}^{\text{dm}} \>|\>\mathbf{n}, \mathbf{Y(w)} \right] &=\tau \\[5pt] \mathbb{E}\left[ \frac{1}{n_t}\sum_{W_i=1}Y_i - \frac{1}{n_c}\sum_{W_i=0}Y_i \>|\>\mathbf{n}, \mathbf{Y(w)} \right] &= \frac{1}{n}\sum_{i=1}^nY_i(1) - \frac{1}{n}\sum_{i=1}^nY_i(0) \\[5pt] \mathbb{E}\left[ \frac{1}{n_t}\sum_{W_i=1}Y_i \>|\>\mathbf{n}, \mathbf{Y(w)} \right] - \mathbb{E}\left[ \frac{1}{n_c}\sum_{W_i=0}Y_i \>|\>\mathbf{n}, \mathbf{Y(w)} \right] &= \frac{1}{n}\sum_{i=1}^nY_i(1) - \frac{1}{n}\sum_{i=1}^nY_i(0), \end{align} \]

where \(\mathbf{Y(w)} = (\mathbf{Y(1)}, \mathbf{Y(0)})\) and \(\mathbf{n} = (n_t, n_c)\).

There are two pieces we need for this:

  1. Link observed to potential outcomes so that \(Y_i = Y_i(W_i)\). This requires the Stable Unit Treatment Value Assumption (SUTVA).

  2. Link treatment group averages to sample averages so that \(\mathbb{E}\left[\frac{1}{n_t}\sum_{W_i=w}Y_i(w)\right] = \frac{1}{n}\sum_{i=1}^{n}Y_i(w)\). This requires randomisation.